top of page
Honey 13.png

Honey

Antimicrobial Properties


Honey has the capacity to serve as a natural food preservative. Research has demonstrated the potential for honey to reduce enzymatic browning in fruits and vegetables and prevent lipid oxidation in meats. Most of the antibacterial activity of the honeys occurs due to hydrogen peroxide generation.1 Other researchers have identified the flavonoids in honey, particularly caffeicacid and ferulicacid, as the most likely contributors.


Antioxidants


Honey contains a variety of phytochemicals (as well as other substances such as organic acids, vitamins, and enzymes) that may serve as sources of dietary antioxidants (Gheldof and Engeseth 2002; Gheldof et al. 2002). The amount and type of these antioxidant compounds depends largely upon the floral source/ variety of the honey (Gheldof et al. 2002). In general, darker honeys have been shown to be higher in antioxidant content than lighter honeys (Gheldof et al. 2002). Researchers at the University of Illinois Champaign/Urbana examined the antioxidant content (using an assessment technique known as Oxygen Radical Absorbance Capacity or ORAC) of 14 unifl oral honeys compared to a sugar analogue. ORAC values for the honeys ranged from 3.0 μmol TE/g for acacia honey to 17.0 μmol TE/g for Illinois buckwheat honey. The sugar analogue displayed no antioxidant activity.


Antioxidant Activity (Measured by Oxygen Radical Absorbance Capacity or ORAC) and Total Phenolic Content of Honeys from Various Sources Compared to a Sugar Analogue* + (mean ± SD)


+ Data from: Gheldof N and Engeseth NJ. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem. 2002;50:3050-3055. aORAC values of all honeys were significantly greater than that for the sugar analogue.


Calories


Honey is a natural source of readily available carbohydrates providing 64 calories per tablespoon


Chemical Characteristics


pH


Honey contains a number of acids which include amino acids (0.05-0.1%) and organic acids (0.57%, range: 0.17-1.17%). The average pH of honey is 3.9 (with a typical range of 3.4 to 6.1).


Proteins, Amino Acids & Isoelectric Point
Protein 0.266%
Nitrogen 0.043%
Amino Acids 0.05 – 0.1%
Isoelectric Point 4.3


Color


Honey is classified by the U.S. Department of Agriculture into seven color categories: water white, extra white, white, extra light amber, light amber, amber and dark amber.


Composition


Honey is composed primarily of the sugars glucose and fructose; its third greatest component is water. Honey also contains numerous other types of sugars, as well as acids, proteins and minerals.4,5 Carbohydrates are described by the number of sub-units they contain. Fructose and glucose are monosaccharides, that is, simple sugars. Sucrose, which is composed of fructose and glucose linked together, is a disaccharide; it comprises a little over 1 percent of the composition of honey. Honey contains other disaccharides which make up over 7 percent of its composition. Some of the disaccharides in honey are maltose, sucrose, kojibiose, turanose, isomaltose, and maltulose. In addition, honey also contains carbohydrates known as oligosaccharides. These are medium- sized carbohydrates, containing more than three simple sugar sub-units, often made of mono- and disaccharides.


Crystallization


Honey sometimes takes on a semi-solid state known as crystallized or granulated honey. This natural phenomenon happens when glucose, one of three main sugars in honey, spontaneously precipitates out of the supersaturated
honey solution. Honey crystallizes because it is a supersaturated solution. This supersaturated state occurs because there is so much sugar in honey (more than 70%) relative to the water content (often less than 20%). Glucose tends to precipitate out of solution and the solution changes to the more stable saturated state


Diabetes


In the past, people with diabetes were advised to avoid “simple sugars” including honey. It was thought that consuming simple sugars would cause a sharp and rapid elevation in blood glucose levels and an overwhelming insulin demand. Some even speculated that eating simple sugars could cause diabetes, a notion that has not been supported by scientific research. In fact, research has shown that some complex carbohydrates raise blood glucose levels more significantly than certain simple sugars (see Glycemic Index). Both honey and sucrose have been shown to produce a lower glucose response than starchy foods such as white bread. Moreover, it has been shown that the total amount of carbohydrate consumed is probably more important than the type of carbohydrate when it comes to blood sugar levels. Thus, experts agree that diabetics may include moderate amounts of “simple sugars” in a balanced diet.6


Dried Honey


Dried honey products available commercially for industrial use are derived from pure liquid honey (1) to which have been added processing aids and other ingredients, (2) which has been dried to a low moisture content, and (3) which in most cases has been converted to a free-flowing product. Processing aids and other ingredients are added to keep the dried honey free-flowing and to modify and enhance the functionality of the product.


Enzymes


Honey naturally contains small amounts of enzymes that are introduced into honey by the bees during various phases of the honey manufacturing process. The predominant enzymes in honey are diastase (amylase), invertase (α-glucosi-dase) and glucose oxidase. Other enzymes such as catalase and acid phosphatase, are generally present in lesser amounts. While enzyme type is fairly uniform across honey varieties the amount of enzyme present can vary widely7. Enzymes play an important role in honey and contribute to its functional

properties.


Fermentation


Fermentation in honey is caused by osmophilic yeasts. It will not occur in honey that has a carbohydrate content > 83%, a moisture content < 17.1%, a storage temperature < 52° F (11° C), or that has been heat-treated. Properly extracted, treated and stored honey should not ferment.


Flavor Enhancement


The carbohydrates found in honey have the ability to improve the intensity of desirable flavors and reduce the intensity of others. Honey enhances sweetness intensity, decreases sourness, decreases the bitterness intensity and increases the acceptability of savory products by modifying saltiness perception.


Floral Sources


There are over 300 floral sources for honey in the United States, including clover, alfalfa, buckwheat and orange blossom. Honey’s color and flavor vary with its floral source.


Freezing Point Depression


15% honey solution: 29.44 to 29.25 °F (-1.42 to -1.53 °C). A 68% honey solution freezes at 21.6 °F (-5.78 °C).


Glycemic Index


Glycemic Index (GI) is defined as the incremental area under the blood glucose response curve of a 50 g portion of a test food expressed as a percentage of the response to the same amount of a reference food (generally white bread or glucose). In other words, the GI describes the rate and extent to which 50 grams of a carbohydrate-rich food will raise blood glucose levels. It has been hypothesized that floral variety can impact the GI of honey dew, at least in part, to differences in the simple sugar concentrations (particularly the fructose : glucose ratio). According to the most recently published International Table of Glycemic Index Values (Foster-Powell et al. 2002), the GIs for honeys from different floral varieties and origins (including Australia, Canada, and Romania) ranges from 35-87. Researchers at San Diego State University recently examined the GI of four US honeys varying in fructose : glucose ratio (Ischayek et al. 2005). The average GI value for the honeys was 72.6 and there were no significant differences between the four honey varieties indicating that small differences in fructose: glucose ratio do not impact the GI of honey.

Honey 14.png

Grades


The USDA sets standards for extracted honey. These voluntary standards, made effective in 1985, are a point system based upon water content, flavor and aroma, clarity and absence of defects.


Heat Treatment


Honey is heat-treated to prevent unwanted fermentation by osmophilic yeasts and to delay crystallization. One common heat treatment is 170 °F (77 °C) for two minutes followed by rapid cooling to 130 °F (54 °C). Other effective treatments include heating honey to 140 °F (60 °C) for 30 minutes or 160 °F (71 °C) for one minute or some straight line gradient between those two temperatures. Honey may be damaged by too much heat.


HMF


Hydroxymethylfurfural (5-hydroxymethyl-2 furalde-hyde), also called HMF, is a compound that results from the breakdown of simple sugars (such as glucose or fructose) at pH 5 or lower. HMF occurs naturally in honey, especially in warm climates.


Infant Botulism


Infant botulism is a rare but serious paralytic disease caused by the microorganism Clostridium botulinum. After ingestion, C. botulinum spores can germinate, grow and produce toxin in the lower bowel of some infants under one year of age. C. botulinum spores are widely distributed in nature. They can be found in soil, dust, the air and raw agricultural products. Honey is also a potential source of C. botulinum spores. Infants are susceptible to infant botulism until their intestinal microfl ora develop. Children and adults with normal intestinal microfl ora are able to ingest C. botulinum spores without harm. The National Honey Board, along with other health organizations, recommends that honey not be fed to infants under one year of age.


Microbiology


Honey has antimicrobial properties that discourage the growth or persistence of many microorganisms. The microbes that may be found in honey are primarily yeasts and spore-forming bacteria. No vegetative forms of disease-causing bacterial spores have been found in honey. Because bacteria do not replicate in honey, if high numbers of vegetative bacteria were to be detected, it may indicate contamination from a secondary source.


Pre- and Pro-biotics


Bifidobacteria are a subclass of a group of bacteria considered important to the health of the gastrointestinal tract hence they are often referred to as “good bacteria” (Tanyak 1999). Increasing populations of these “good bacteria” (and suppressing potentially deleterious microorganisms) are thought to be important to maintaining optimal gastrointestinal health. Bifidobacteria populations in the gut can be increased by consuming probiotics or prebiotics. A probiotic is a live microbial feed supplement which beneficially affects the host organism by improving its intestinal microbial balance. A prebiotic is a non-digestible dietary supplement that modifies the balance of the intestinal microflora thereby stimulating the growth and/or activity of the beneficial bacteria while suppressing the growth of the harmful bacteria. The most common prebiotics are nondigestible oligosaccharides including fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), and inulin. Honey contains a variety of oligosaccharides that may function as prebiotics. Research conducted at Michigan State University has shown that adding honey to fermented dairy products such as yogurt can enhance the growth, activity, and viability of Bifidobacteria as well as other commercial oligosaccharides.


Refractive Index


The moisture, or conversely the soluble solids in honey, is determined by measuring the refractive index of honey using a refractometer. Because the refractive index of honey is different from that of a sucrose solution at the same concentration, a special moisture chart must be used. This chart is found in AOAC Method 969.38 (see Analytical Methods). Using the “Brix” or “Sucrose” scale will provide inaccurate values for honey.


Specific Gravity


Dependent upon water content:

Water Content (%) Specifi c Gravity (20 °C)

15 1.4350

18 1.4171

Other factors such as fl oral source slightly affect the specific gravity of honey. Honeys from different origins or batches should be thoroughly mixed to avoid layering.


Specific Heat & Thermal Conductivity


The specifi c heat of honey is in the 0.54-0.60 cal/g/°C range for liquid honey, and is equal to 0.73 cal/g/°C for fi nely granulated honey. The thermal conductivity of honey increases with temperature and total solids, ranging from 118 x 10 -5 to 143 x 10 -5 cal/cm sec °C.


Sports Nutrition


It is well-known that carbohydrate consumption prior to, during and after exercise enhances performance and speeds recovery. Honey is a natural source of readily available carbohydrates, providing 17 grams of carbohydrates per tablespoon and may serve as an inexpensive alternative to commercial sports gels. Preliminary data from the University of Memphis Exercise and Sports Nutrition Laboratory suggest that honey is as effective as glucose for carbohydrate replacement during endurance exercise.


Storage


At room temperature, crystallization begins within weeks or months (but rarely days). The crystallization process can be avoided with proper storage, with emphasis on proper storage temperature. For long-term storage, the use of air-tight, moisture-resistant stainless steel drums is recommended. Cool temperatures [below 50°F (10°C)] are ideal for preventing crystallization. Moderate temperatures [50-70°F (10-21°C)] generally encourage crystallization. Warm temperatures [70-81°F (21-27°C)] discourage crystallization but degrade the honey. Very warm temperatures [over 81°F (27°C)] prevent crystallization but encourage spoilage by fermentation as well as degrading the honey.


Sweetness


In most honeys, fructose predominates and tends to make honey taste slightly sweeter than sugar. On the average, honey is 1 to 1.5 times sweeter (on a dry weight basis) than sugar.


Viscosity


The viscosity of honey is affected by temperature, moisture content and floral source. Table 4 shows how the viscosity changes as temperature, moisture content and floral source change. The viscosity of honey decreases rapidly as its temperature rises. 1% moisture is equivalent to about 3.5°C in its effect on viscosity.


Water Activity


Honey’s water activity varies between 0.5 (16% moisture) and 0.6 (18.3% moisture) in the 40-100 °F (4-37 °C) temperature range.

Honey 15.png
bottom of page